
Project Number: GFP0804

A Virtual Team Room in Wonderland

A Major Qualifying Project Report

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Joshua Dick

Gerard Dwan

Date: January 12th, 2009

Approved:

__

Professor Gary F. Pollice, Major Advisor

2

Abstract

When a team of students working on a large software engineering project needs to

collaborate together, holding in-person meetings can be difficult. Various issues could

prevent the team from collaborating easily and effectively in person. Our project aims to

solve these problems. We developed two software modules for Project Wonderland, an

open-source toolkit from Sun Microsystems Labs for creating collaborative 3D virtual

worlds. We used these modules, along with preexisting modules, to build a proof-of-

concept virtual team room inside Wonderland for use by students taking WPI's Software

Engineering class.

3

Acknowledgments

We would like to thank everyone who has helped, encouraged, or guided us

throughout our project.

George Heineman and Gary Pollice organized the Sun Microsystems Project Center.

They have put lots of time and effort into making the project center a reality. Professor

Pollice, who was also our project advisor, gave us lots of guidance and help along the way,

and our experience would have been much less beneficial without it.

We would also like to thank Sun Microsystems for allowing us to utilize their

facilities and employees for our project. The patience, help and knowledge exhibited by

Jordan Slott, Nicole Yankelovich, and the rest of the Project Wonderland team are truly

appreciated.

4

Table of Contents

Abstract .. 2

Acknowledgments .. 3

List of Illustrations and Figures .. 5

Introduction .. 6

Background ... 10

Virtual Worlds ... 10

Sun Microsystems .. 12

Project Wonderland .. 13

The Virtual Team Room .. 17

Methodology ... 20

The HTML Viewer .. 20

Conception ... 20

First Steps .. 22

Next Steps .. 25

Final Steps .. 27

WonderBlocks ... 28

Conception ... 28

First Steps .. 33

Next Steps .. 41

Final Steps .. 48

The Virtual Team Room .. 50

Results and Conclusions .. 51

Results .. 51

Future Work... 52

Conclusion .. 53

Appendix .. 55

WonderBlocks Backend Design Notes ... 55

Background Information .. 55

Architecture .. 55

Data Persistence .. 59

Works Cited .. 62

5

List of Illustrations and Figures

Figure 1: The software stack of Project Wonderland. .. 14

Figure 2: Web pages rendering in-world at the end of day four .. 25

Figure 3: Control flow of the HTML Viewer ... 27

Figure 4: A possible use of "task shapes" in an in-world meeting 30

Figure 5: A possible way of grouping "task shapes" and their dependencies 31

Figure 6: "Task shape sky view", passively displaying all tasks ... 31

Figure 7: The WonderBlocks state saving and loading process ... 34

Figure 8: An early experiment with placing colored 3D primitives in-world 38

Figure 9: WonderBlocks shading, directional connections and auto-rotating labels 42

Figure 10: Two parts of the WonderBlocks messaging protocol 46

Figure 11: Information in a WLC XML file needed by the XMLStateManager class 49

Figure 12: Depiction of the representation of a connection between two Blocks. 58

Figure 13: Blocks, BlockConnections and the managers working together. 59

Figure 14: Example of [de]serialization of the manager classes to/from XML. 61

6

Introductions

WPI’s Computer Science department offers an undergraduate course called

Software Engineering. When we took the course, the professor who taught it defined a

fairly large software development project. Students split into development teams to

complete this project. The professor runs the course as if he were running a small software

company, and student teams are in turn subjected to issues that could arise at “real”

software companies, better preparing them for real software development jobs.

Throughout the duration of the course, students are required to meet with a company

president, marketing guru, and technical advisor (all characters are realized by the

professor or other course staff).

Because each student team develops software separately, but are all trying to realize

the same project, there is a large amount of competition between teams. Which team will

be able to bring project to fruition most effectively in seven weeks? Inside a team, students

work very closely with each other to brainstorm, assess tasks and plan a development

schedule, evaluate what progress they’ve already made, and (of course) write code.

Although a lot of work is done independently, it is necessary for students to frequently hold

team meetings so that the entire team can collaborate.

Unfortunately, holding team meetings is an idea that is easier said than done. Often,

scheduling meetings is a nightmare, attempting to find a block of free time common to each

team member’s already busy schedule. Team members live at various locations on and off

campus, which makes attending meetings difficult for them. Furthermore, there is no

consistent, defined space where teams can meet. As a result, students often end up holding

7

meetings in random computer labs on campus, which are not ideal meeting environments,

especially if other students share the space with them.

All of the students that were accepted into the Sun Microsystems MQP project

center were presented with various project ideas, all to be executed in different groups at

Sun. After learning about each available project, each student ranked them by preference

and was assigned to a project based on that information. The project that we were assigned

to focused on Project Wonderland from Sun Labs, which is open source toolkit written in

Java for creating collaborative 3D virtual worlds.

The question then became, what should we do with Wonderland? Our WPI MQP

advisor Gary Pollice is one of the professors who teaches Software Engineering. Professor

Pollice was well aware of the aforementioned problems students face when trying to hold

team meetings, and he wondered if the collaborative Wonderland software could address

those problems. Eventually, his thoughts evolved into the idea of a virtual team room in

Wonderland, for use by students taking Software Engineering at WPI. If executed correctly,

a virtual team room could overcome the issues associated with holding in-person team

meetings.

With this goal in mind, we went to work. We wanted our software to be useful for

the original virtual team room idea, as well as for future projects by Sun or by the open

source community. After brainstorming with our Sun liaison Jordan Slott and the principal

investigator for Sun Labs’ Collaborative Environments Project, Nicole Yankelovich, we

decided that trying to create an entire virtual team room from scratch was not an ideal way

to start out. Rather, we decided to create software components (Wonderland modules) that

would be useful for both our team room and for project Wonderland in general. The

8

following components help meet our goal because they can be placed in a virtual room and

help teams to collaborate.

The first component we worked on was called the “HTML Viewer”. The HTML

Viewer is a lightweight Web browser that allows Web pages to be displayed as posters

inside Wonderland. In a virtual team room setting, the HTML Viewer can display project

tasks or project build statistics on a wall in the team room, so that this information is

immediately visible to all team members when they attend a meeting. The HTML Viewer

has obvious potential uses outside the scope of our virtual team room project. We lovingly

refer to the HTML Viewer as our “training wheels” component, since working on it got us

accustomed to developing for Wonderland.

We wanted our next component to take advantage of Wonderland’s 3D space. After

more brainstorming with Professor Pollice, Jordan, and Nicole, we came up with the idea

for a 3D diagramming and data visualization tool that we decided to call “WonderBlocks”.

The idea for WonderBlocks stemmed from an earlier idea involving visualizing software

development tasks and their dependencies in 3D. This is just one possible use for

WonderBlocks in a virtual team room setting, but WonderBlocks has countless other

potential uses.

After developing the HTML Viewer and WonderBlocks, we created a proof-of-

concept virtual team room that housed our components as well as other preexisting

Wonderland components.

We organize this paper as follows. The “Background” section discusses the concept

of virtual worlds, as well as Wonderland itself, in more detail. The “Methodology” section

chronicles our work on the two components and our development process. The “Results

9

and Analysis” section examines the outcome of our project, and our accomplishments. We

discuss how our project realized our plans at the beginning, and how those plans evolved

over time. Finally, the “Future Work and Conclusions” section discusses what Sun Labs, the

open source community, and we might do to build upon our work.

10

Background

In this section, we discuss virtual worlds in general. We explore the different kinds

of virtual worlds that are available, as well as reasons why virtual worlds exist. We also

compare and contrast popular virtual worlds and Project Wonderland. Finally, we discuss

some aspects of the higher level design of Project Wonderland.

Virtual Worlds

Virtual worlds, on a very basic level, are simulated environments. These

environments can be represented in any number of ways, such as text-based, two-

dimensional, and three dimensional environments. The users, or in many cases,

inhabitants, of these environments must have a way to represent themselves. Each user is

represented visually in some way. This visual representation is called an avatar. Usually,

users have the ability to change the appearance of their avatars as they see fit.

Most of the virtual worlds available today utilize three-dimensional environments.

In some cases these environments have the same rules as the real world. Avatars can

interact with elements of the world and simulated gravity tethers avatars to the ground.

There are many different locations and environments that can be explored by an avatar,

and these locations and environments are, at times, analogous to real-life places. Places

such as an outdoor terrain or an office building are norms in virtual worlds. Virtual worlds

can also include environments that are not analogous to real-life places, such as the

environment of "Music in Wonderland"1, where users can see and interact with a library of

music that is visually displayed in a 3D space.

1 (Sun Microsystems, Inc., 2008)

11

There are several ways that users can interact with each other through their

avatars. Some virtual worlds allow for text-based communication between users. This is

similar to having an instant message chat, but an avatar represents the person that one

speaks to. Another popular form of communication is via audio, where one can use a

microphone and headphones to talk to other users. Many virtual worlds take advantage of

directional audio; that is, if an avatar is speaking to the user's left, the left speaker projects

the avatar's audio track, and there will be a slight time delay between the left and right

speakers (the sound will be in the left speaker first, then move to the right.) In addition, in

some cases the volume of the audio is affected by the distance between the user's avatar

and another avatar in the virtual world.

There are many virtual worlds available today. One of the more popular virtual

worlds is Second Life®. Second Life is a 3D virtual world that was created and is

continuously changed by its users (called Residents.)2 Second Life is "inhabited" by millions

of people worldwide. This means that millions of people log in and create homes and/or

markets within Second Life. This can be done easily, thanks to Second Life’s in-world

scripting language. This in-world scripting language is said to be very easy to use, and

whatever each user creates becomes his or her property. Many companies have started

using Second Life to advertise and recruit employees. IBM has eleven different locations in

Second Life,3 and Second Life even has a virtual Apple Store.4

2 (Linden Research, Inc., 2008)
3 (Second Life Business Communicators Wiki, 2007)
4 (MacBlogz.com, 2008)

12

Virtual worlds can also be used as educational tools. Professors can give lectures to

students across the globe. Sixty schools have real estate in Second Life.5 This is made

possible by tools that are offered in virtual worlds such as virtual lecture halls and

presentation viewers. In a similar vein, virtual worlds can be used for business training. In

one instance, a virtual world has even been used for flight training for the air force.6 IBM

has also made use of virtual worlds. They have created a Business Center in Second Life.

The business center offers tours that walk people through their data centers. They also

have speakers that give lectures to people about the up and coming technology being

developed at IBM. Additionally, they hold conferences where employees and customers

come to collaborate about new ideas, or find ways to solve current problems.7

Sun Microsystems

Sun Microsystems (Sun) has a vision in which "The Network is the Computer." Sun

has been creating revolutionary processors for years and has gone above and beyond the

industry standard with the UltraSPARC processor. Sun has also gotten its name out with

Java, a programming language and platform that can be used on almost any computer, and

most mobile phones. Sun produces a UNIX-based operating system called Solaris, and has

also fostered development of a free, open-source Office software suite called OpenOffice.

Sun Labs is the research and development branch of Sun Microsystems. They

typically work on products that are revolutionary and different. There are sub-groups

inside Sun Labs that work on different technology areas. For example, one of the groups is

working on Sun SPOTs. Sun SPOTs are Small Programmable Object Technology devices.

5 (Lamb, 2006)
6 (Sun Microsystems, Inc., 2007)
7 (IBM, 2008)

13

They are used in many different ways, from heart and heat monitors to educational tools.

Their purpose is open ended. Another Sun Labs group works on Project Wonderland,

which we discuss next.

Project Wonderland

Project Wonderland is a toolkit created at Sun Microsystems Labs for creating 3D

virtual worlds. Wonderland is written completely in the Java programming language and is

entirely open-source. Project Wonderland is built on top of an open-source distributed

game server framework—also from Sun Labs—called Project Darkstar. Wonderland’s

Software Phone is built on top of jVoice Bridge. As mentioned earlier, all of this is written

entirely in Java. On top of all of Project Wonderland and the Software Phone are the virtual

worlds that can be created using Wonderland software. The following image shows the

software stack discussed here.

14

Figure 1: The software stack of Project Wonderland.8

Another part of the Wonderland architecture is the concept of the cell. A “cell” in

Wonderland typically acts as a container for a given Wonderland module. For example,

when a developer places a whiteboard into a virtual world, or room, the cell that the

whiteboard is placed in contains information such as which direction the whiteboard will

face and where the whiteboard should be located. In order to create multiple whiteboards

in a given area, there must be multiple cells containing whiteboards. Simple information

that a given cell needs to be placed in-world and initialized correctly (such as size and

position information) is stored in and read from a Wonderland Cell Descriptor (WLC) XML

8https://lg3d-wonderland.dev.java.net/files/documents/5924/119938/Wonderland-

InWorldSlides.odp

15

file. WLC XML files are part of what is called the Wonderland File System (WFS), which

includes all files needed to represent a given virtual world.

Project Wonderland also includes superb audio technology. The Wonderland team

believes that that audio is important for effective interaction inside a virtual world, and so

they have created a unique audio experience that immerses users into Wonderland. For the

next iteration (version 0.5 as of this writing), Wonderland developers are working to

completely revamp the Wonderland architecture, specifically in the areas of Wonderland

modules and 3D graphics.

One of Project Wonderland's primary intended uses is as a business tool that brings

employees together from around the globe to collaborate. Wonderland was initially

released as a technology demo, and development could have stopped at that point.

However, Sun is pursuing further development on Wonderland in order to explore the new

and relatively untapped field of the use of virtual worlds in business environments.

Wonderland is open-source; it is very accessible. Because it was developed with the

open-source community in mind, it is also extremely extendable. Developers can add

functionality to Wonderland, as well as create new models for buildings (from floor to

ceiling), and the graphics for new tools. Developers can create components that can be

added to the world with ease. These components are known as Wonderland modules.

There is a large array of modules already available in Wonderland and there are many

more in the works. A few of the modules that can be used today are shared whiteboards,

tools to view PDF-formatted documents, and music exploration applications.

How does Project Wonderland compare to other virtual world products? Project

Wonderland is not a virtual world in itself; rather, it is a toolkit for creating virtual worlds.

16

Most virtual worlds are made for leisure or entertainment, whereas Project Wonderland

was built more to accommodate meetings between business associates that could not make

it to a meeting whether they are sick, injured, or live in a different time zone. While most

virtual world software available today is not open-source, Project Wonderland has a strong

open-source community contributing to the project. Community contributions become part

of Wonderland fairly quickly, allowing the project to grow in ways that the original

developers never thought. Anyone can run a Wonderland server and create their own

virtual world. This is different then many other virtual world software, which would

typically require logging in to a service and using servers run by the company providing the

software.

Wonderland is now undergoing a major architectural upgrade. The Sun Labs team is

improving the API for developing in Wonderland. Additionally, Wonderland's graphics will

be handled by JMonkey Engine9 instead of using the Java3D library, which was originally

used to render Computer Aided Design drawings. JMonkey is an open source API for high

performance graphics. JMonkey allows for better shading and three-dimensional rendering

than Java3D, which will translate to better looking avatars, objects and environments for

Wonderland-based virtual worlds. Wonderland’s new avatars will be able to show

expressions, which is not possible in the current version of Wonderland. Wonderland’s

module system will be revamped, making it easier than ever to develop and customize

virtual worlds created with Wonderland.

9 (JME, 2008)

17

The Virtual Team Room

Software engineering students at WPI can run into problems when conducting

necessary formal meetings to collaborate on their team projects. These students cannot

always meet at the times scheduled because of other meetings, athletics, or other

commitments. Once a meeting time is determined, a room needs to be allocated in which

the team will meet and the meeting rooms on campus are oftentimes occupied with clubs,

groups, and organizations that reserve the meeting space year round, so booking a meeting

room could be out of the question. Classrooms are not typically available for students to

have meetings and even so, classrooms are not ideal for holding meetings. In order to

accommodate these problems, we decided to create a virtual team room using the

Wonderland toolkit.

In our vision, the virtual team room is a place that Software Engineering students

can meet any time of the day or night. Students can be in this team room at any time of day

they wish, and from anywhere there is a computer or telephone. There is no need to worry

about another club or organization using the team room, as it is made specifically for the

use of these engineering students.

There are additional benefits of using the virtual team room as opposed to

scheduling a time in a regular meeting room. There are ways to keep track of progress in

the virtual team room, so that the students in the team will be able to visualize how far

along they are and what work needs to be completed before the project is considered

complete. Though these resources may also be available in a real-world team room, they

are available around the clock in a virtual team room. There is no need to try to find all of

18

the needed materials for the project if one is in the virtual team room, as it is also a place to

organize project references and requirements.

Course staff can also take advantage of the virtual team room. They will be able to

keep track of metrics involving student participation and project progress. In doing so, they

will find if the room is being used to its full potential and give suggestions on how to use

the room more efficiently. Course staff can also hold office hours in the virtual team room.

This way, even if a student is not able to physically make it to a teaching assistant (TA) for

any reason, he or she can still meet with the TA. The professor will be able to go into the

team room as well. He or she will be able to assess the progress being made by the teams,

and (as a teaching assistant may do) can make suggestions for improvement.

While creating a team room has its benefits for the Software Engineering students at

WPI, it does not have as much to offer for the Sun and Open Source communities. After

considerable brainstorming, we decided to create modules that could be useful for a virtual

team room, rather than creating the team room itself as the main deliverable. This way, our

work can be useful for the Wonderland community in the future, instead of being tied to

one specific use. We believe that this approach aligns well with Project Wonderland’s

general goals as well as the goals of the developers at Sun.

A side benefit of this decision is that the virtual team room can make use of

preexisting Wonderland modules. Wonderland’s PDF Viewer can be used to display

slideshows or assignment sheets in-world. Wonderland also has a whiteboard module that

can be used to collaborate or make quick diagrams and notes. Wonderland even includes

an in-world phone system, so that if a team member cannot attend a virtual meeting on the

computer, they can still call in to the meeting using an ordinary telephone and participate

19

that way. Additionally, work is being done on an authentication process for Wonderland.

This could allow for individual teams to keep their work private, and prevent it from being

tampered with.

With these ideas in mind, we decided to create modules for a virtual team room. Our

thought process on the specific components and how we created the components are

discussed in the next section of this paper.

20

Methodology

We spent our first day or two at Sun wondering where to start. We needed to think

of a “training wheels project” that would get us comfortable with developing Wonderland

modules. We used a three step approach to accomplish this. First, we worked through

several Wonderland development tutorials written by Jordan Slott10 to get a general feel

for the structure of (and process of developing) Wonderland modules. Next, we explored

the source code of already-existing Wonderland modules to learn about how complex,

useful modules are constructed. We then had enough background knowledge to start

creating our first Wonderland module.

The HTML Viewer

Conception

We decided that the best way to create our first Wonderland module was to modify

an already-existing Wonderland module to fit our needs, rather than start from scratch. We

were free (and even encouraged) to modify an existing module. We chose the PDF Viewer

module created by Sun developer Nigel Simpson.

There is a different Wonderland module that allows any X11 application to be

displayed and manipulated in-world. (X11 or X Window System is “is a highly configurable,

cross-platform, complete and free client-server system for managing graphical user

interfaces (GUIs) on single computers and on networks of computers.”11 The majority of

Linux applications available today use X11.) One of the primary uses of this module is to

facilitate in-world Web browsing by using X11 forwarding with a full-featured Web

10 (Slott, 2008)
11 (Linux Information Project, 2006)

21

browser like Mozilla Firefox. This solution works well when a full-featured interactive Web

browser is available, but simply displaying Web pages in-world could be done much more

easily. The X11 forwarding module can be difficult to set up, requiring a host machine to

actually run the application(s) to be forwarded.

These observations gave us the idea to take Nigel’s PDF Viewer and modify it to

display Web pages in-world. Our module would not be an interactive Web browser. Rather,

it would display a Web page as if it were an in-world poster. It would do so in a way that is

more lightweight than the X11 solution, because it would be written completely in Java,

requiring no external software or Web browser dependencies. Web pages are written in

HTML, and since our module would be based on the PDF Viewer, it logically made sense to

call our module the HTML Viewer.

We thought of several ways in which the HTML Viewer would be useful for the

virtual team room. One could display a Web page containing current project build statistics,

or team tasks inside the SourceForge system used by WPI’s software engineering classes,

or class announcements. Several HTML Viewers could display Web pages that may require

a quick glance during a typical team meeting. For instance, if the HTML Viewer displayed a

single page from SourceForge, that page would look different every time a meeting was

conducted, always showing the most current information. In other words, the HTML

Viewer was designed to display information that needs to be quickly reviewed, without

requiring user intervention. Without interactivity, the HTML Viewer has an easy “set it and

forget it” mechanism; for instance, the SourceForge build statistics page could be posted to

the team room wall once, and then it would simply stay there, visible for any team member

to see. In addition to being useful for the virtual team room, the HTML Viewer would also

22

be useful for other Wonderland worlds in the future, when a full-featured Web browser

was not needed but a lightweight way of displaying a Web page would suffice.

First Steps

Since we knew our module would have to display Web pages without utilizing a

traditional Web browser, the very first thing we did was to research methods for rendering

Web pages using Java alone. Since the point of creating the HTML Viewer was not to write

an HTML parsing and rendering system from scratch, but rather to learn how to develop

for Wonderland, we decided to look for preexisting open-source Java HTML rendering

engines that we could simply integrate into the HTML Viewer. Most of the available options

were either extremely out-of-date or rendered Web pages too poorly to be useful. At the

end of our stint of research in this area, the best option seemed to be the open-source

Cobra HTML Renderer and Parser12. Cobra is part of the Lobo Project13, which is an open-

source Web browser written completely in Java. During our testing, Cobra rendered Web

pages more accurately than any of the other open-source Java HTML rendering engines we

tried.

The decision to use Cobra inside the HTML Viewer introduced a problem involving

licensing. The Cobra library is released under an LGPL license. Cobra utilizes a library from

Mozilla called Rhino for its JavaScript functionality, which is released under a dual MPL

1.1/GPL 2.0 license. Wonderland is released under a GPL 2.0 license, but can be dual-

licensed for commercial customers14. Shortly after we made the decision to use Cobra,

Jordan informed us that a potential dual-licensing conflict could occur between Rhino (and

12 http://lobobrowser.org/cobra.jsp
13 http://lobobrowser.org
14 (Sun Microsytems, Inc., 2008)

23

therefore Cobra) and Wonderland. Only Rhino’s GPL license was compatible with Cobra’s

LGPL license; selecting the MPL license for Rhino would have violated Cobra’s LGPL license

terms when using it with Cobra. However, Rhino’s GPL license has a “viral” effect: all code

that “derives” from Rhino must also be licensed under GPL. The definition of “derives from”

is unclear and debated in the legal community. The potential conflict stemmed from the fact

that using Cobra/Rhino might force Sun to license all of Wonderland under GPL, which

would prevent commercial (non-GPL) licenses form being issued to customers.

Jordan said that Cobra would have to undergo a license review by Sun’s legal

department before it would be allowed to officially be included in Wonderland. As a

temporary solution, we simply did not store Cobra in the area of Sun’s code repository that

houses the HTML Viewer code. To use the HTML Viewer after checking out the code, one

currently has to manually download the Cobra library and place its component files in

specific areas, although our documentation for the HTML Viewer includes instructions that

explain how to do this. Although we later found out that Sun Legal approved the use of

Cobra/Rhino, we chose to not make any further repository changes. This way, an

administrator that sets up an instance of the HTML Viewer will always be forced to seek

out and use the newest version of the Cobra library.

We next had to tie the HTML viewing capability into Nigel Simpson’s PDF Viewer

that we had selected as our starting point. Nigel’s PDF Viewer works by converting PDF

pages into Java BufferedImage objects that are eventually painted in-world. Thus, we knew

that we’d need a way to render HTML and store the result in a BufferedImage object, rather

than display it directly on-screen (like Cobra’s sample code had showed us how to

24

accomplish). While researching how to accomplish this, we found a blog post15 containing

Java source code that accomplished that very task. The post’s author did not mention

anything regarding the licensing of the posted code. However, the code had been made

publicly available so we assumed that it could be legitimately adapted for our use, given

proper citation.

Armed with this knowledge, we started actually modifying the PDF Viewer. We first

wrote a Java method that accepts a URL to a Web site in String form, and returns a

BufferedImage of that Web site. We found the point in the PDF Viewer source code where a

variable containing a BufferedImage of a PDF page gets painted to the screen. Directly

before that point, we changed the value of the variable holding the BufferedImage by

calling our new method. At the end of our fourth day at Sun, we were very excited to see

Web pages render in-world. (See the figure below.)

15 (Brown, 2008)

25

Figure 2: Web pages rendering in-world at the end of day four

Next Steps

 Despite our excitement, there was still a lot of work to be done on the HTML

Viewer. At this point, we started referring to the module as the “hacked PDF Viewer”,

because it still did all of its PDF processing and rendering computations, then ignored the

result and substituted a Web page image in its place. A large portion of the subsequent

development work on the HTML Viewer involved removing unneeded or redundant code

associated with the PDF viewer. Additionally, we had to make design decisions regarding

how the finished HTML Viewer should be structured.

The most important decision we made was that the HTML Viewer would be thick-

client/thin-server. That is, the Web page rendering is done on each Wonderland client,

rather than on the server. This reduces the load on the server in two ways: first, the server

26

would not have to physically render the page (which is computationally intensive,) and

second, it does not have to send the rendered image to each client over the network.

Instead, the server is used to send messages between clients (for example, “Render the

page ‘http://www.sun.com’”), and clients act on those messages independently. The next

design decisions we made involved the messaging protocol that the server would use to

communicate to clients. We ended up modifying the existing message protocol in the PDF

Viewer.

Now that the unused PDF Viewer code and GUI elements were removed from the

HTML Viewer, we set to work modifying parts we had left intact to better suit our needs.

We added relevant error messages/dialogs. We added the ability to zoom in and out on a

page using either the mouse wheel or HUD (heads-up display) buttons. We also added the

ability to synchronize or un-synchronize the HTML Viewer. When an in-world instance of

the HTML Viewer is “synced”, all clients that are also synced will affect each other; if one

synced client navigates to a new Web page, all other synced clients then display that page.

If an HTML Viewer is “un-synced” in a particular client, no other client is affected by it.

When an un-synced instance of the HTML Viewer re-syncs, it displays the same page as its

synced peers.

When a client is instructed by the user to display a new page, it first checks if the

page is valid. If the page is invalid, an error message is displayed. If the page is valid, the

client then starts rendering the page. If the client is running in synchronized mode, it uses

the aforementioned messaging protocol to notify the server that a synchronized page

change should occur. The server then sends a message to all other clients, instructing them

27

to display the new page. This process is outlined in the control flow of the HTML Viewer as

depicted in the figure below.

Figure 3: Control flow of the HTML Viewer

Final Steps

The final feature we added to the HTML Viewer was a refresh button, allowing

clients to individually refresh the currently displayed page. Aside from final general code

polishing, we also fixed a major problem where the Wonderland client would become

28

temporarily unresponsive while the HTML Viewer rendered pages in un-synced mode (this

was not happening in synced mode). It turned out that the problem involved knowing

which thread was calling a time-consuming method that actually rendered Web pages. We

discovered that when the HTML Viewer runs in un-synced mode, the Swing Event

Dispatcher thread is responsible for this. This is because when the HTML Viewer runs in

un-synced mode, it does not listen for any instructions from the Wonderland server.

Therefore, threads specific to Wonderland’s Darkstar backend do not run while the HTML

viewer is in un-synced mode and cannot be used for this purpose. However, when the

HTML Viewer runs in synced mode, threads provided by Darkstar can and should be used,

because they abstract away the Swing Event Dispatcher thread. The solution was to allow

the appropriate thread to call the rendering method, depending on which mode (synced or

un-synced) was currently selected.

At the end of our second week at Sun, we decided that we had done enough work on

the HTML Viewer, and that we had fulfilled the goals we had hoped to accomplish by

developing it. We knew that more features could always be added to the HTML Viewer (see

the ‘Future Work and Conclusions’ section of this paper,) but that it was time to remove our

“Wonderland development training wheels” and move on.

WonderBlocks

Conception

Well before we had finished working on the HTML Viewer, we started

brainstorming with Professor Pollice, Jordan, and Nicole to come up with ideas for the next

Wonderland module that we would develop for use in the virtual team room. Since the

29

HTML Viewer is essentially a 2D application used inside a 3D space, we wanted our next

module to actually utilize the 3D space. After thinking of and rejecting ideas for our new

module, one idea seemed promising: a module that visualizes project tasks and their

dependencies in 3D. This module would be extremely useful in a virtual team room setting.

During a meeting, tasks could be assigned to or traded between team members. If one or

more tasks had to be completed before higher-level tasks could be started, this module

could clearly show that.

In our vision for this module, tasks are represented by 3D shapes: blocks, spheres,

cones, and cylinders. Shapes have several attributes associated with them, such as size and

color. A task’s shape could represent the area of the project that the task is associated with;

for instance, boxes could represent database-related tasks while spheres could represent

UI-related tasks. A task’s color could represent a task’s completion status. Perhaps red

tasks are those that have not been started yet or assigned to any team members, yellow

tasks are currently being worked on, and green tasks are those that have been completed. A

task’s size might represent the relative amount of time/work required to complete the

task; simple tasks would be represented by smaller shapes while complex tasks would be

represented by larger shapes. Perhaps tasks connected together with lines could indicate

that those tasks share a dependency.

Once we had the concept of using 3D shapes to represent project tasks, we started

thinking of (and sketching) ways that these ‘task shapes’ could be manipulated and viewed

coherently by multiple users in-world.

30

Figure 4: A possible use of "task shapes" in an in-world meeting

The figure above depicts one idea we had in which team members could assign and

trade tasks during a meeting. In this vision, tasks assigned to a given team member float

above that member’s head in a straight line. Tasks are ordered by priority; the most urgent

tasks appear closest to each individual’s head. If one task depends on another task, this is

conveyed by an arrow that appears in midair between those tasks. Any team member can

create new tasks, delegate one of their tasks to another team member, change any task’s

priority, update a task, and remove or complete a task. We believe a tool like this would be

a useful visual aid for teams while doing project planning; instead of trying to write

everything on a whiteboard or computer, all tasks (and their owners, properties, and

relationships) are immediately visible to all team members.

What if a team member enters the virtual team room while a formal meeting is not

taking place? Tasks that are assigned during meetings could ‘float up’ to the ceiling in a

“cloud” or “sky” view, as depicted in the figures below.

31

Figure 5: A possible way of grouping "task shapes" and their dependencies

Figure 6: "Task shape sky view", passively displaying all tasks

Regardless of whether a formal team meeting is being held, “sky view” allows all

team members to view all tasks (and their dependencies) simultaneously. “Sky view”

32

groups tasks by their shape (which once again represented task category in our vision.) In

either of the available views, clicking on a task would show detailed information or notes

specific to that task.

After some further discussions with Professor Pollice, Jordan, and Nicole, we

realized that our vision of these “task shapes” was slightly narrow. If it were to be

completed, a “task shapes” module would be immediately useful for our virtual team room,

but perhaps not as useful to developers working on future Wonderland worlds or modules.

It was this realization that inspired the idea for our WonderBlocks module.

Instead of doing task planning in 3D, WonderBlocks is much more generalized. It is

essentially a 3D diagramming and data visualization tool for Wonderland. WonderBlocks

borrows several ideas from our initial “task shapes” vision: objects (tasks, songs, Facebook

groups, anything!) are represented by 3D shapes that we decided to call “blocks.” Blocks

can be cubic, conic, spherical or cylindrical and can be a number of different colors and

sizes. Blocks can optionally have associated text labels that are displayed above them in-

world. Blocks can optionally be associated with any number of other blocks, and those

associations can be directionless, directional, or bidirectional. Furthermore, multiple users

can create, change, and remove blocks and their associations simultaneously.

Using WonderBlocks, groups of users/avatars can collaboratively construct

diagrams representing various kinds of information. In a virtual team room setting,

WonderBlocks could be used to create diagrams illustrating our original idea of task

management, software architecture diagrams, diagrams of database schemas, or any other

kind of diagram. It should be clear that WonderBlocks has many potential uses both in a

33

virtual team room setting and in any setting that would benefit from having 3D

diagramming functionality.

Now that we had come up with a clear vision for WonderBlocks, it was time to start

developing the module.

First Steps

We made our initial design and explored several design considerations. We

determined that having the ability to toggle between an “avatar-associated” view and the

previously-discussed “sky” view, as in our “task blocks” concept, would be far too

complicated to implement in the amount of time we had to complete the project. Instead,

we decided that WonderBlocks would operate in a single view that essentially mimics the

“sky view” concept, but at avatar level (rather than ceiling level.) In our original “task

blocks” concept, we had the idea of associating any type of metadata with a block, and that

clicking on a block would display or otherwise convey that metadata. To keep things simple

for WonderBlocks, the only metadata associated with a block is a plain text label that would

is displayed on that block in-world.

Another design decision we made was that an instance of the WonderBlocks module

would occupy a single Wonderland cell when placed in-world. We decided that a

Wonderland cell would house all WonderBlocks (as opposed to having one block per cell),

and that all interactions with WonderBlocks would occur inside the cell. Information about

WonderBlocks cell positioning and size would be stored in a WLC XML file. (Wonderland

cells and WLC XML files are described in the “Background” section of this paper.)

Wonderland’s persistent data storage capabilities are limited. The Wonderland

server does not provide a built-in way of saving information between restarts, so

34

WonderBlocks diagrams/sessions would be lost and reset to empty diagrams if the

Wonderland server was ever restarted. To remedy this problem, we would have to

implement our own persistent data storage mechanism that would operate independently

of any of Wonderland’s built-in functionality. This mechanism would have to persistently

store and load the state of an instance of the WonderBlocks module (including information

about all blocks and their connections) between Wonderland server restarts. We decided

that the module’s running state could be saved by using Java’s XMLEncoder and

XMLDecoder classes to serialize the Java objects representing the state into a single XML

file, stored on the computer running the Wonderland server. When the server [re]starts,

the WonderBlocks application state is then deserialized back into memory from the XML

file. This WonderBlocks state saving and loading process is depicted in the diagram below.

Figure 7: The WonderBlocks state saving and loading process

35

The XML file mentioned does not use mechanisms from (and is not specific to)

Wonderland like the WLC XML file is; rather, it is proprietary and specific to the

WonderBlocks module only.

Since we knew that developing WonderBlocks would be a much larger undertaking

than developing the HTML Viewer, we split initial development work into two general

areas. Code would have to be written concerning the logic and rules governing the behavior

of (and relationships between) individual WonderBlocks. We would eventually refer to this

code the “WonderBlocks backend”. Neither of us had any prior experience doing 3D

graphics programming, let alone doing graphics programming with Java3D for

Wonderland, as we had only done 2D work for the HTML Viewer. Knowledge of 3D

graphics programming (specifically with Java3D) is an obvious requirement for developing

WonderBlocks. We would eventually refer to objects that are displayed on-screen and GUI

elements as the “WonderBlocks frontend”.

The WonderBlocks Backend

As mentioned earlier, we refer to the area of the WonderBlocks code concerning the

logic and rules governing the behavior of (and relationships between) individual

WonderBlocks as the “WonderBlocks Backend.” We made the decision to start developing

the backend completely outside Wonderland for simplicity.

The very first part of the backend that was developed was a simple JavaBeans class

representing a single block, including information such as block size, shape type, color, and

more. A second JavaBeans class representing a connection between two blocks was then

created. JavaBeans classes are “reusable, platform-independent components…that can be

36

changed or customized.”16 Utilizing the JavaBeans architecture for blocks and connections

ensures that additional features/functionality can be easily added to blocks and

connections without needing to make significant changes to preexisting WonderBlocks

code.

Initially, the connection class included fields that referred to block objects, and we

realized this would cause issues relating to the way we had chosen to implement persistent

application state storage (namely, that block and connection objects are serialized to an

XML file.) If connection objects directly ‘stored’ block objects, the blocks inside the

connections would be serialized to XML in addition to the original (actual) block objects. In

other words, using this scheme, redundant copies of block objects would be stored.

To work around this problem, we created two singleton manager classes, one for

blocks and one for connections. The manager classes map blocks and connections to unique

ID numbers. This way, connections can store blocks’ ID numbers, rather than the blocks

themselves. Connections reference a given block by telling the block manager to expose a

block with a given ID number. All block objects are only accessible via the block manager

class, while all connection objects are only accessible via the connection manager class.

This separation ensures that no redundant data is stored when each class is serialized to an

XML file.

Because the backend code was initially developed outside Wonderland, we were

able to write JUnit tests for it. The tests actually helped us find and fix a minor bug. After

the backend code had evolved enough, we thought that it was ready to be tied with the

WonderBlocks frontend that was being developed at the same time, and to work inside

16 (Sun Microsystems, Inc., 2008)

37

Wonderland. At this point, the decision to develop the backend code completely outside

Wonderland caused unforeseen problems that will be discussed later.

Note that design notes detailing the workings of the WonderBlocks backend appear

in this paper’s appendix.

The WonderBlocks Frontend

The WonderBlocks frontend consists of everything users see and manipulate when

interacting with WonderBlocks: the blocks and connections as displayed in-world, the

heads-up display buttons, and various popup dialog boxes and status notifications. The

frontend is essentially the user interface for WonderBlocks. To start developing the

WonderBlocks frontend, we experimented with the very simple Wonderland module that

had been created as a result of following Jordan Slott’s previously-mentioned Wonderland

development tutorials. This module placed a textured 3D primitive in-world that would

change between a cube and a sphere when clicked. Although this module was certainly

very simple, it lent itself naturally to be a starting point for WonderBlocks, as

WonderBlocks also involves working with 3D primitives in-world. On our fifteenth day at

Sun, we started experimenting with manually adding untextured, solid-colored primitives

in-world, as pictured below.

Figure 8: An early experiment

 We faced some interesting problems during these initial experiments. First, the

primitives shown in Figure 7 certainly do

did some experimenting with polygon counts,

triangles are used to draw a 3D object, and therefore control how ‘smooth’ a primitive

appears. For each type of primitive, we chose polygon counts that struck a good balance

between graphics performance and primitive

Because light reflects off of 3D objects, and our primitives looked very flat and not

three dimensional, we spent a good deal of time investigating 3D shading techniques in

Java3D. After doing a lot of Internet research and talking to various

members at Sun, we were able to add appropriate shading

primitives, making them ‘pop’ and appear much more three

: An early experiment with placing colored 3D primitives in-world

We faced some interesting problems during these initial experiments. First, the

certainly do not look very smooth or three-dimensional. We

did some experimenting with polygon counts, which effectively control how many 2D

triangles are used to draw a 3D object, and therefore control how ‘smooth’ a primitive

appears. For each type of primitive, we chose polygon counts that struck a good balance

between graphics performance and primitive smoothness.

Because light reflects off of 3D objects, and our primitives looked very flat and not

three dimensional, we spent a good deal of time investigating 3D shading techniques in

Java3D. After doing a lot of Internet research and talking to various Wonderland team

members at Sun, we were able to add appropriate shading and specularity

, making them ‘pop’ and appear much more three-dimensional.

38

world

We faced some interesting problems during these initial experiments. First, the

dimensional. We

which effectively control how many 2D

triangles are used to draw a 3D object, and therefore control how ‘smooth’ a primitive

appears. For each type of primitive, we chose polygon counts that struck a good balance

Because light reflects off of 3D objects, and our primitives looked very flat and not

three dimensional, we spent a good deal of time investigating 3D shading techniques in

Wonderland team

and specularity to our

39

Another challenge we faced was actually breaking out of Wonderland’s built-in

abstractions for placing objects in-world. Normally, Wonderland automatically stores and

reads an object’s positions and orientation to/from a WLC XML file, and automatically

places that object in-world accordingly. Because we did not want each and every block to

have their own individual XML files to store positioning and placement information, we had

to peel back Wonderland’s layers of Java3D abstractions, and to manually position

primitives with pure Java3D code.

The largest challenge we faced in developing the WonderBlocks frontend concerned

how connections between blocks are drawn in-world. Originally, we had thought to use

long, thin, bar-like Java3D cylinders to represent connections. These cylinders were to be

placed in-world using this algorithm:

1. The origins of the blocks to be connected are averaged together to find their 3D

midpoint, which becomes the connection’s origin.

2. The distance between the origins of the blocks to be connected is calculated using

the Pythagorean theorem, and this distance becomes the connection’s length.

3. A thin cylinder with the calculated length is drawn at the calculated origin. Angles of

rotation for the cylinder in all three 3D axes are calculated using basic trigonometric

functions, and the cylinder is then rotated into the appropriate position to appear as

though it is connecting the two blocks.

It turned out that this algorithm worked much better in theory than in practice. We

experimented with this algorithm, and never got the third part of it to work correctly. We

drew complex diagrams and experimented with trigonometry, but no matter what we did,

the cylinders would simply not rotate into place correctly. After the experimentation,

40

Jordan helped us realize that the problem occurred because our algorithm was trying to do

rotations compositionally (rotating in one axis, then another, and finally a third). The

problem with this approach is that rotations around one axis may affect the other two axes,

so the compositional rotation approach we were using could never work correctly 100% of

the time. We discovered a mathematical device to solve this problem called Euler

angles17,18. However, the math involved is extremely complex and we had already spent

two days working on connection rotation with no results, so we decided to move on. Rather

than using shaded 3D cylinders to represent connections between blocks, we decided

instead to draw connections using a native Java3D function that simply draws an unshaded

line that connects two 3D points (in our case, the origins of each block.)

Connections between blocks are directional, and we had to think of a way to

represent those directions visually. Our original plan was to place tiny 3D cones at the ends

of a directional connection that are parallel to that connection, so that the cones would look

like arrows. We knew this would not be an option because of the compositional rotation

problem; we would not be able to make the arrows point away from a block or towards a

block. Instead, we decided to represent directional indicators with tiny spheres rather than

tiny cones. Because spheres are symmetrical in all directions, rotation of spheres is not an

issue.

At this point, we had done several experiments with hard-coding blocks and

connections, and after we were confident in the techniques involved, we started writing

methods to draw blocks and connections dynamically. These methods accept objects from

the WonderBlocks backend (blocks and connections) as parameters, and draw them in-

17 (Weisstein, 2008)
18 (Wikipedia, 2008)

41

world. At this point, it became necessary to start formally linking the WonderBlocks

frontend and backend code together.

Next Steps

The WonderBlocks backend and frontend code were now evolved enough that they

were ready to be linked together into the first version of the WonderBlocks module. To do

this, we had to design a messaging protocol allowing the Wonderland server to

communicate with all clients running WonderBlocks. After our initial work on the

messaging protocol, the Wonderland server was able to deserialize some information

about blocks and connections from an XML file and then send that information to each

client running WonderBlocks. Each client would interpret the received information and

draw blocks and connections accordingly.

Along the way, we gradually added more features to the WonderBlocks frontend.

We were able to figure out how to get block and connection labels to rotate in 3D and

always face a given user’s avatar (each connected user always sees the labels rotate to face

them as they move around in-world.) This feature is useful because this way, labels are

always readable for all clients, no matter where avatars are positioned; avatars cannot

walk ‘behind’ labels causing them to appear backwards, because they automatically rotate

to face the avatar.

WonderBlocks was finally starting to look as we had originally envisioned it,

sporting shaded blocks, labels, and connections with directional indicators (see the figure

below.) However, there was still a lot of work to be done on WonderBlocks. The module

still needed a user interface, and its client/server messaging protocol left a lot to be

desired.

Figure 9: WonderBlocks shading, directional connections and auto

WonderBlocks Frontend, continued

 For the WonderBlocks user interface, we decided to use the same type of

display (HUD) menu buttons that the PDF Viewer and HTML Viewer both use. We spent a

lot of time deciding how the user should be able t

After some experimenting, we decided that the HUD should be triggered two ways, either

by clicking on any block or connection, or by simply walking in the near vicinity of the

WonderBlocks in-world. Initially, the HUD a

user walked away from the WonderBlocks in

problem; if a user was editing a WonderBlocks diagram and stepped back to get a better

look, the HUD would close. Because o

manually dismissed by the user, upon clicking

automatically or manually triggered, but it is always manually dismissed.

: WonderBlocks shading, directional connections and auto-rotating labels

Frontend, continued

user interface, we decided to use the same type of

menu buttons that the PDF Viewer and HTML Viewer both use. We spent a

lot of time deciding how the user should be able to trigger and dismiss this HUD menu.

After some experimenting, we decided that the HUD should be triggered two ways, either

by clicking on any block or connection, or by simply walking in the near vicinity of the

world. Initially, the HUD automatically dismissed itself whenever the

user walked away from the WonderBlocks in-world, but we realized this created a usability

problem; if a user was editing a WonderBlocks diagram and stepped back to get a better

look, the HUD would close. Because of this, we decided that the HUD should always be

upon clicking a ‘close’ button. In essence, the HUD can be

automatically or manually triggered, but it is always manually dismissed.

42

labels

user interface, we decided to use the same type of heads-up

menu buttons that the PDF Viewer and HTML Viewer both use. We spent a

o trigger and dismiss this HUD menu.

After some experimenting, we decided that the HUD should be triggered two ways, either

by clicking on any block or connection, or by simply walking in the near vicinity of the

utomatically dismissed itself whenever the

world, but we realized this created a usability

problem; if a user was editing a WonderBlocks diagram and stepped back to get a better

f this, we decided that the HUD should always be

In essence, the HUD can be

43

 We decided that the HUD would work using a modal interface. The HUD includes

buttons for ‘block creation mode’, ‘connection creation mode’, ‘editing mode’, ‘deletion

mode’, a save button, and a close button. Modes can be switched simply by clicking any

mode button. Modes can be exited by either clicking on any mode button twice (to toggle

it,) or by closing the HUD entirely. Whenever a single client adds, deletes, or edits a

connection or block, the change is visually reflected on all connected clients.

In block creation mode, a dialog box pops up for the user to enter information

specific to the new block like block size, color, etc. After clicking ‘OK’, the block is added in-

world. In connection creation mode, clicking on one block and then another block triggers a

dialog box that pops up for the user to enter information about the connection. After

clicking ‘OK’, the connection is added in-world. Connections can optionally have a label, and

can optionally be directional, bidirectional, or non-directional. Directional connections

always point from the first block clicked to the second block clicked. To reverse a

connection’s direction, it has to be deleted and then recreated by clicking the blocks to be

connected in the opposite order. This obviously is not an issue for bidirectional and non-

directional connections. In editing mode, clicking on any block or connection will display a

dialog box allowing the user to change the properties it was last assigned. After clicking

‘OK’, the changes made are reflected in-world. In deletion mode, clicking on any connection

instantly removes it from the world. Clicking on any block instantly removes it and all

connections associated with it from the world. Clicking the ‘Save’ button in the HUD

instructs the Wonderland server to serialize the current WonderBlocks diagram/state to

an XML file that will be reloaded when the server restarts. Whenever the ‘Save’ button is

44

clicked on any client, all connected clients display a status message that notifies the user

that the diagram was saved.

We believe that in general, WonderBlocks’ modal interface is easy to learn and use.

We realize that this modal interface does have some downsides. For instance, if a user is in

“deletion mode” and does not realize it, and then clicks on a block, that block and all of its

connections will be deleted and irrecoverable. An undo feature (discussed in the “Future

Work” section of this paper) would help to make this less of an issue.

WonderBlocks Backend, continued

The WonderBlocks client/server messaging protocol code constantly evolved as the

features mentioned above were added and implemented. The messaging protocol is at the

heart of WonderBlocks. Messages are sent between the client and server for any user-

initiated action. For instance, when a client is in connection creation mode and blocks are

clicked, the client sends the server a message informing the server that a connection should

be created. This message contains all of the information necessary to make the connection,

including which two blocks should be connected, and the connections name and direction,

if specified. The server then inspects its own internal state of the running WonderBlocks

application. If the two blocks specified in the message are already connected in the server’s

internal state, or if the two blocks clicked on actually happen to be the same block, the

server will realize this and will then send the requesting client a message instructing that

particular client to display an appropriate error message. If the connection was

successfully created in the server’s internal state, it sends a message to all connected

clients (including the requesting client) instructing those clients to draw the new

connection locally.

45

All interactions with WonderBlocks work this way; messages always originate at

one client and are sent to the server. Then, the server will either generate an appropriate

message to be sent to that particular client (usually in the case of an error) or to all clients

including that particular client (usually in the case of a valid operation.) A user’s actions

trigger clients to generate messages and send them to the server, but clients never

independently act on a user’s actions (only on messages received from the server). We

chose this approach to avoid synchronization issues.

For example, in the case of deleting a block, assume that a client deletes a block

locally, before sending a message to the server saying “tell all other clients to also delete

this block”. Meanwhile, another client has requested that two blocks be connected, and one

of the blocks involved in the connection is the one that the first client has just deleted

locally. The first client would not be able to create the connection if instructed to by the

server, because it has already locally deleted a necessary block, but all other clients will be

able to. This would mean that the clients would be in an inconsistent state, and this is the

exact reason that we did not implement the WonderBlocks messaging protocol in this

fashion. Because all clients request state changes from the server when instructed by a

user, but only perform those changes when instructed to by the server, all clients stay in

the same synchronized state. The Wonderland server automatically handles request

concurrency; if two clients make conflicting requests simultaneously, the server will

process those requests in a transactional way and will ensure that a consistent state is still

maintained. See the diagram below for a depiction of the client � server � client

messaging process just described.

46

Figure 10: Two parts of the WonderBlocks messaging protocol

 Implementing the messaging protocol this way requires the server and all clients to

independently run their own respective copies of the WonderBlocks backend code.

Otherwise, clients would not know what to do when receiving messages like ‘delete the

block with this id’. Even so, the messaging protocol ensures that the running state of the

application is consistently synchronized across all clients and the server. Each client’s

backend state is independently updated and each client independently reflects visual

changes in-world upon receiving a message from the server.

 Since the initial development of the WonderBlocks backend occurred completely

outside of Wonderland, a few unanticipated problems with the backend code relating to

47

synchronization and concurrency came up after running the same code inside Wonderland.

We realized that using singletons for the manger classes creates unnecessary redundancy

and complications when the backend code runs inside of Wonderland. It turned out that

Wonderland’s Darkstar backend automatically provides the same protection for the

manager classes that was previously provided by the singleton design pattern. Keeping the

manager classes as singletons was now not only redundant, but also caused random

crashes because of conflicts with the Darkstar backend. Naturally, we removed the

singleton functionality from the manager classes. (For simplicity, the WonderBlocks

backend design notes in this paper’s appendix still assume the backend classes are still

singletons.)

We also found another interesting concurrency-related bug in the backend code

once it was running inside Wonderland that had not surfaced when it was running

independently. During functional testing, we noticed that some operations would be

randomly ignored, the client-side and server-side manager states would go out of sync, and

a ConcurrentModificationException would be thrown by both the Wonderland client and

server. This problem appeared in two places in the backend code: a single HashSet in

memory was being iterated through in one class, while another class simultaneously

removed elements from it. Operations like that are not thread-safe, which is why that

problem surfaced. The solution turned out to be simple: a copy of the HashSet to be altered

is created, and then the copy is iterated through while the original is altered. A more

elegant solution would have been to switch from using foreach loops to using Java Iterators

with Iterator.remove(), etc, but doing so would have required extensive backend

refactoring. Although creating copies of the HashSets in question is less memory-efficient

48

than using Iterators, doing so was a quick and acceptable solution to the problem.

Interestingly, the functional tests that revealed the problem involved block deletion.

Final Steps

At this point, our seven weeks at Sun were nearly over, and WonderBlocks was

nearly complete. A few more features were added to the WonderBlocks backend. On the

server side, WonderBlocks always serialized its state data to a static XML file on the

Wonderland server. What if a developer would rather use a database to store state data, or

another method entirely? To give developers this freedom, we added an abstract class

called StateManager that allows for persistent data storage in the WonderBlocks backend.

This abstract class contains abstract methods allowing for serialization and deserializtion

(storage and retrieval) of StateContainer objects, which encapsulate the two manager

classes. Together, the two manager classes encapsulate the entire running state of an

instance of the WonderBlocks module. We then wrote a class called XMLStateManager that

implements the StateManager class. It performs the functionality we had already written of

serializing and deserializing the manager classes to/from XML files, while also utilizing the

abstract class/”generic” data storage code we wrote.

A feature we added to the “generic” data storage system is the ability to store any

kind of textual key-value pairs in the Wonderland WLC XML file. This way, per-installation

information can be stored in and read from the WLC XML file, and easily modified by a

Wonderland server administrator who does not necessarily have Java programming

knowledge. For example, if a developer was to write a MySQLStateManager class, necessary

information specific to MySQL like “hostname=mysql.myserver.com, dbname=wonderland,

username=sqluser, password=sqlpass,” etc, can be stored in the Wonderland WLC XML file

and changed easily. For our XMLStateManager class, the following information needs to

appear in the WLC XML file:

Figure 11: Information in a WLC XML file needed by the XMLStateManager class

As you can see, the XMLStateManager class relies on a piece of information called

“XMLDataPath”, which specifies the path

be serialized to/deserialized from.

from the WLC XML files, and because of our abstract StageManager class, we believe we’ve

given future WonderBlocks developers a lot of freedom to be able to implement persistent

data storage in whatever way they may prefer.

One final feature we added to the WonderBlocks backend was consistent logging

functionality through the use of Java’s built in Logger class. Whenever any WonderBlocks

state change occurs on the clients or server, detailed information about the change is

logged. All log entries are written in a consistent way that should be able to be easily

parsed using regular expressions, etc. This way, if team members or a supervisor (in the

case of the virtual team room, a professor) want(s) to see how a particular instance of the

and changed easily. For our XMLStateManager class, the following information needs to

: Information in a WLC XML file needed by the XMLStateManager class

As you can see, the XMLStateManager class relies on a piece of information called

“XMLDataPath”, which specifies the pathname that the WonderBlocks state XML file should

be serialized to/deserialized from. Because any kind of textual key-value pairs can b

from the WLC XML files, and because of our abstract StageManager class, we believe we’ve

given future WonderBlocks developers a lot of freedom to be able to implement persistent

data storage in whatever way they may prefer.

d to the WonderBlocks backend was consistent logging

functionality through the use of Java’s built in Logger class. Whenever any WonderBlocks

state change occurs on the clients or server, detailed information about the change is

written in a consistent way that should be able to be easily

parsed using regular expressions, etc. This way, if team members or a supervisor (in the

case of the virtual team room, a professor) want(s) to see how a particular instance of the

49

and changed easily. For our XMLStateManager class, the following information needs to

As you can see, the XMLStateManager class relies on a piece of information called

that the WonderBlocks state XML file should

value pairs can be read

from the WLC XML files, and because of our abstract StageManager class, we believe we’ve

given future WonderBlocks developers a lot of freedom to be able to implement persistent

d to the WonderBlocks backend was consistent logging

functionality through the use of Java’s built in Logger class. Whenever any WonderBlocks

state change occurs on the clients or server, detailed information about the change is

written in a consistent way that should be able to be easily

parsed using regular expressions, etc. This way, if team members or a supervisor (in the

case of the virtual team room, a professor) want(s) to see how a particular instance of the

50

WonderBlocks module is being used, detailed logs could be exposed (and then potentially

parsed) by intercepting the output of the Logger object.

At this point, after flattening a few minor last-minute bugs, we had finished

developing WonderBlocks. However, there was still one more task to complete before our

time at Sun was over.

The Virtual Team Room

The original project vision was to build a virtual team room inside Wonderland. At

this point, we had created components that we thought would be useful for a virtual team

room, as well as for Wonderland in general, but we had not spent a lot of time working on

creating the virtual team room itself. We quickly created a team room using Wonderland

World Builder that showcases both of our modules, as well as the preexisting PDF Viewer

and whiteboard modules. Our team room has a main area (for all teams), three smaller

meeting areas (for individual teams), and an outside “deck” area to showcase the

WonderBlocks component. After completing our work on the virtual team room, our time

at Sun had come to a close.

51

Results and Conclusions

Results

Our original project vision was to create a virtual team room using Sun's open-

source virtual world toolkit, Project Wonderland. After completing our work, we feel that

the accomplishments that we made can contribute to the team room concept as well as to

Wonderland’s open source community as a whole.

Our sponsors at Sun were satisfied with the work that we did during our stay at Sun.

We were able to adapt quickly to the technology and to the 3D mindset, and our sponsors

took notice. The code we wrote at Sun is now in a repository that is accessible by Sun

employees and the Wonderland development community, for anyone to use and/or

improve upon. This allows for plenty of possibilities for future work on (or applications of)

our modules.

The size of our project is large considering the short duration of the project. The

HTML Viewer consists of a total of 1,267 lines of Java code, and WonderBlocks consists of

2,782 lines of Java code.19 These statistics do not incorporate other files (such as WLC XML

files) needed by the Wonderland server to actually place the HTML Viewer and

WonderBlocks modules in-world. In the Sun Labs environment, we were able to run

extensive functional tests on the modules as we wrote them, and did so at a comfortable

pace thanks to the performance capabilities of the lab machines we were provided with.

19 Measured using David A. Wheeler's 'SLOCCount' program.

52

Future Work

We are satisfied with the work that we have done in the seven weeks we spent at

Sun Microsystems. However, there are certainly some things that could be done to expand

upon the work we have completed.

We created the HTML Viewer not only to expand the Project Wonderland toolkit,

but to also get accustomed to the project. Here are some improvements and features that

could be made/added to the HTML viewer in the future:

• Scrolling/panning around a zoomed-in page using the keyboard and mouse.

• Automatically refreshing a given page using a timer.

• Browser-like features, such as clickable links, forward/back buttons, and an

address bar rather than an address dialog.

The WonderBlocks module also has many possibilities for expansion:

• Re-drawing parts of WonderBlocks diagrams when those parts change, as

opposed to always re-drawing entire diagrams

• Positioning blocks with mouse dragging, instead of entering 3D coordinates

in dialog boxes

• Continuing to display the mode indicator in the HUD after status messages

such as "State Saved" are displayed

• Making connections appear more 3D by using cylinders instead of Java3D

lines

• Custom metadata for each block

53

• "Sky view": In a meeting, if someone is assigned a task, that task could float

up to the ceiling and all of the tasks combined would give the group an idea

of what their progress is and what to expect in the near future

• An ‘undo’ feature to revert accidental modifications

There is also future work for WonderBlocks that is already lined up for other

students. The title of the work is "3D Brainstorming Tool Based on WonderBlocks"20 and

the concept behind the project is to make WonderBlocks act like 3D sticky notes, and to

export the organization of the blocks to a spreadsheet.

Finally, our project focused on modules for a virtual team room in Wonderland.

Although we created a prototype team room to show off these modules, the team room

itself could be significantly expanded and improved upon. Another Major Qualifying Project

group at WPI is currently doing work on the virtual team room. The virtual team room will

consist of the Wonderland modules that we have created as well as preexisting modules

(such as Wonderland's Software Phone). The virtual team room might also contain new

modules currently being developed by various WPI MQP groups.

Conclusion

We have contributed modules to Wonderland’s open-source community that are

useful and include many possibilities for future expansion. The modules we created also

helped enforce our initial project vision of creating a virtual team room in Wonderland.

The work we have done at Sun Microsystems did not only benefit us, but it

benefitted our advisors as well. We were able to help our WPI advisor by creating tools that

can be used to augment one of the courses he teaches at WPI. Our WonderBlocks module

20 (Sun Microsystems, Inc, 2008)

54

will be expanded in some of the ways described in the “Future Work” section of this paper,

as part of a separate WPI MQP project. Through our work on WonderBlocks, our Sun

advisors acquired a tool that shows off Wonderland’s capabilities and utilizes the 3D space

to visualize data in a way that has not been done before. WonderBlocks can also act as a

foundation for future work to be done in Sun’s virtual world toolkit.

 We have learned a great deal during our time on this project. One of the concepts we

were able to become familiar with was what it was like to have a career in the software

industry. We commuted to Sun Microsystems every day to work in an office environment,

while collaborating with team members and taking suggestions from a manager. We also

enjoyed the Sun campus and the corporate culture at Sun. We learned a great deal about

adapting to develop on software platforms that we have not seen or used before. This is the

first time that either of us has developed software that works with 3D graphics, and now

we are both open-source contributors.

 Overall, the work we have done in creating these modules for a virtual team room

was a success. While the end result does not exactly match our initial project vision, we

were able to keep all of our advisors satisfied, both at WPI and at Sun Microsystems. We

hope that our work will continue to be expanded upon in the future, as it is part of Sun's

expansive open-source community, as well as of WPI Major Qualifying Projects that are

currently in progress. Through all of the hard work we have done, we have learned a great

deal, and will not soon forget the lessons we have learned while completing this project.

55

Appendix

WonderBlocks Backend Design Notes

Background Information

This section of the appendix details the design of the WonderBlocks backend, which

executes on the Wonderland server. It should be noted that every Java class in the

WonderBlocks backend follows the JavaBeans convention, and can be placed into one of

three categories:

1. Classes representing objects that will be displayed in-world (Block,

BlockConnection)

2. Classes that manage in-world objects (BlockManager, BlockConnectionManager)

3. Classes that assign IDs that managers can map in-world objects to (BlockID,

BlockConnectionID)

Architecture

IDs

Each object that can be displayed in-world (Blocks and BlockConnections) has an

associated ID number that is represented by a separate object (a BlockID or a

BlockConnectionID.) This way, only one copy of each Block and BlockConnection object

exists in memory, but they can be referenced multiple times by other objects via their IDs.

It is the responsibility of the manager classes (BlockManager and

BlockConnectionManager) to actually map IDs to the objects they represent. The ID classes

statically store the next ID number to be assigned, so that each time a new ID object is

56

instantiated, the ID number stored inside it is automatically incremented. Separate ID

classes exist for each object type so that BlockIDs and BlockConnectionIDs can increment

independently.

Blocks

The Block class represents a single WonderBlock. This class stores information such

as WonderBlock shape, size, color, and attribute/value pairs (metadata.) Blocks can also be

connected together, but they do not retain connection information directly; connections are

actually represented by a separate BlockConnection class. To that end, each Block

maintains a list of BlockConnectionIDs, where each BlockConnectionID is associated with

the BlockConnection that includes that particular Block.

BlockConnections

A connection between two Blocks is represented by the BlockConnection class.

There are special rules governing connections.

Namely:

1. No Block can be connected to itself.

2. No two Blocks can share more than one connection between them.

3. A Block can have any number of connections to other Blocks, provided that rule 2 is

not broken.

4. A connection between any two Blocks can be directionless, directional, or

bidirectional.

These rules are handled by the Block Connection Manager, which will be discussed

later.

57

A BlockConnection object stores information about the two Blocks that share that

connection, as well as the direction in which the Blocks are connected. An advantage of

having distinct BlockConnection objects is that it is possible for connections to have

metadata associated with them that is independent of the two Blocks sharing the

connection. (For example, each connection could store a weight, which would allow one to

create a weighted graph.)

It was mentioned before that each Block maintains a list of BlockConnectionIDs that

are associated with connections involving that Block. In actuality, only one Block in a given

connection actually keeps track of that connection’s ID in its list of BlockConnectionIDs; the

other Block stores no information about that particular connection and does not ’know’ it is

part of a connection. The BlockConnection class employs a loose parent/child analogy to

distinguish between the two Blocks sharing the connection. For a given connection, the

parent Block is the one that stores that connection’s ID.

This analogy makes the most sense for directional connections; a parent Block

always points to a child Block, so the parent Block keeps track of that connection’s ID. The

analogy works similarly but is less logical for directionless and bidirectional connections.

Although there is not a parent/child relationship between blocks that are connected

bidirectionally or with no direction, the connection is still represented as a parent/child

relationship internally. Regardless of the connection’s direction, only the parent Block

’knows’ that it is part of a connection.

See the figure below for a diagram depicting the relationships between Blocks and

BlockConnections that were just described.

58

Figure 12: Depiction of the representation of a connection between two Blocks.

The most complex classes in the WonderBlocks backend are the two manager

classes, BlockManager and BlockConnectionManager. To facilitate easy sharing of the

backend’s state between its component classes, the WonderBlocks manager classes are

singletons. They should be invoked accordingly by calling *Manager.get*Manager().

Normally, the singleton design pattern mandates that singleton classes should have

protected constructors, so that the classes cannot be manually instantiated (which would

cause data synchronization problems.) The WonderBlocks manager classes DO NOT have

protected constructors. Instead, these classes have public constructors, which are

necessary for them to follow the JavaBeans convention. Therefore, be very careful when

working with the manager classes. They should NEVER be manually instantiated.

The manager classes are the backbone of the WonderBlocks backend. Each manager

abstracts away Block or BlockConnection objects so that they can be referred to and

manipulated by ID number anywhere in the code, any number of times, while always

maintaining a single copy of a given Block or BlockConnection object in memory. See

figure below for a simplified code listing demonstrating how Blocks, BlockConnections, and

their respective manager classes work together to represent the overall state of an insta

of the WonderBlocks module. For more specific information regarding how the manager

classes should be used and manipulated, please see the WonderBlocks API documentation.

Figure 13: Blocks, BlockConnections and the managers

Data Persistence

Wonderland is built on top of Sun’s Pro

includes a Berkeley DB database for persistent storage. Unfortunately, the Wonderland 0.4

server erases this database every time the server is res

component uses a different approach for persistent storage. Because every WonderBlocks

class follows the JavaBeans convention, each of them can be serialized and stored on disk.

manipulated by ID number anywhere in the code, any number of times, while always

a single copy of a given Block or BlockConnection object in memory. See

for a simplified code listing demonstrating how Blocks, BlockConnections, and

their respective manager classes work together to represent the overall state of an insta

. For more specific information regarding how the manager

classes should be used and manipulated, please see the WonderBlocks API documentation.

locks, BlockConnections and the managers working together.

nd is built on top of Sun’s Project Darkstar game framework, which

DB database for persistent storage. Unfortunately, the Wonderland 0.4

server erases this database every time the server is restarted, so the WonderBlocks

component uses a different approach for persistent storage. Because every WonderBlocks

class follows the JavaBeans convention, each of them can be serialized and stored on disk.

59

manipulated by ID number anywhere in the code, any number of times, while always

a single copy of a given Block or BlockConnection object in memory. See the

for a simplified code listing demonstrating how Blocks, BlockConnections, and

their respective manager classes work together to represent the overall state of an instance

. For more specific information regarding how the manager

classes should be used and manipulated, please see the WonderBlocks API documentation.

ject Darkstar game framework, which

DB database for persistent storage. Unfortunately, the Wonderland 0.4

tarted, so the WonderBlocks

component uses a different approach for persistent storage. Because every WonderBlocks

class follows the JavaBeans convention, each of them can be serialized and stored on disk.

60

At a later time, they can then be read back from the disk and be deserialized back into Java

objects.

Remember that the manager classes abstract away Blocks and BlockConnections,

and that Blocks and BlockConnections themselves refer to each other internally via ID

numbers that are assigned by the managers. What this means is that serializing the

manager classes to disk stores the entire running state of an instance of the WonderBlocks

component, without including any redundant information (multiple copies of the same

object.) Upon deserializing the saved data, WonderBlocks execution can resume as if the

application had never terminated.

Note that the two managers have to be serialized to and deserialized from disk in

the same order. In our current implementation of the WonderBlocks backend, the two

managers are [de]serialized to/from XML files using Java’s built-in XMLEncoder and

XMLDecoder classes. See the figure below for a simplified code listing that demonstrates

[de]serialization of the two manager classes to/from XML files. We've created generic

interfaces to allow for [de]serialization, so that developers using the WonderBlocks

backend will have more options for implementing data persistence. In other words, rather

than saving all data to XML files, a developer may wish to [de]serialize data to/from a

database, etc.

Figure 14: Example of [de]serialization of the manager classes to/from XML.

[de]serialization of the manager classes to/from XML.

61

[de]serialization of the manager classes to/from XML.

62

Works Cited

Brown, M. (2008). Images of Websites. Retrieved 12 12, 2008, from Martin Brown:

http://mwbrown.org/webshot.shtml

CollegeOTR.com, T. W. (2008, December 11). College OTR: FCC Commissioner: World

of Warcraft Makes College Kids Drop Out. Retrieved December 11, 2008, from College OTR:

http://www.collegeotr.com/college_otr/fcc_commissioner_world_of_warcraft_makes_colle

ge_kids_drop_out_16679

IBM. (2008, July 21). IBM Business Center. Retrieved January 2, 2009, from IBM

Business Center: http://www.ibm.com/3dworlds/businesscenter/us/en/

JME. (2008). JMonkeyEngine.com. Retrieved December 11, 2008, from

JMonkeyEngine.com web site: http://www.jmonkeyengine.com

Lamb, G. M. (2006, October 5). At colleges, real learning in a virtual world -

USATODAY.com. Retrieved December 11, 2008, from USATODAY.com:

http://www.usatoday.com/tech/gaming/2006-10-05-second-life-class_x.htm

Linden Research, Inc. (2008). Second Life | What is Second Life? Retrieved December

11, 2008, from Second Life Web site: http://secondlife.com/whatis/

Linux Information Project. (2006, March 29). The X Window System: A Brief

Introduction. Retrieved 1 12, 2009, from Linux Information Project:

http://www.linfo.org/x.html

MacBlogz.com, A. o. (2008, May 14). Second Life Apple Store. | MacBlogz - One Stop

Apple News. Retrieved December 11, 2008, from MacBlogz - One Stop Apple News:

http://www.macblogz.com/2008/05/14/second-life-apple-store/

63

Second Life Business Communicators Wiki. (2007, 12 31). Brands with a Second Life

Presence List. Retrieved 12 12, 2008, from Second Life Business Communicators Wiki:

http://slbusinesscommunicators.pbwiki.com/FindPage?RevisionsFor=Companies+in+Seco

nd+Life

Slott, J. (2008, 07 31). Extending Project Wonderland by Creating New Cell Types.

Retrieved 12 12, 2008, from Project Wonderland:

http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandNewCell

Sun Microsystems, Inc. (2008, December 01). TWiki . Javadesktop . StudentProjects.

Retrieved December 11, 2008, from TWiki . Javadesktop web site:

http://wiki.java.net/bin/view/Javadesktop/StudentProjects

Sun Microsystems, Inc. (2008, February 14). Lesson: JavaBeans Concepts. Retrieved

January 12, 2009, from The Java Tutorials:

http://java.sun.com/docs/books/tutorial/javabeans/whatis/index.html

Sun Microsystems, Inc. (2007). lg3d-wonderland: Project Wonderland. Retrieved

December 01, 2008, from lg3d-wonderland: Project Wonderland Web site: https://lg3d-

wonderland.dev.java.net/

Sun Microsystems, Inc. (2008). Project Looking Glass. Retrieved December 11, 2008,

from Sun Microsystems web site: http://www.sun.com/software/looking_glass/

Sun Microsystems, Inc. (2008, October 7). Sun Labs - Project Wonderland - Go ahead,

make a scene. Retrieved January 2, 2009, from Sun Microsystems:

http://research.sun.com/spotlight/2008/2008-08-19_project_wonderland.html

64

Sun Microsytems, Inc. (2008, 8 30). Project Wonderland User FAQ (Frequently Asked

Questions). Retrieved 12 12, 2008, from java.net:

http://wiki.java.net/bin/view/Javadesktop/ProjectWonderlandEndUserFAQ

Weisstein, E. W. (2008). Euler Angles. Retrieved 12 15, 2008, from Wolfram

MathWorld: http://mathworld.wolfram.com/EulerAngles.html

Wikipedia. (2008, 12 10). Euler Angles. Retrieved 12 15, 2008, from Wikipedia:

http://en.wikipedia.org/wiki/Euler_angles

